guide

Electronic Fuel Injection

The Otto engine needs a mixture of fuel and air for its operation. It would be the task of the fuel supply—carburetor or injection—to provide the engine with the ideal mixture. Unfortunately, there is no such thing as an ideal mixture.

Perfect combustion, as chemistry calls it, would require air and fuel in proportion of 14.7 parts to 1 (this is the so-called stoechiometric ratio). While this might be satisfactory for the scientists, the real-life conditions of a vehicle call for slightly different characteristics.

We use the ratio of actual mixture to the stoechiometric mixture, called lambda (λ), to describe the composition of the mixture entering the engine: λ=1 denotes the chemically ideal mixture, λ<1 means rich, λ>1 is lean.

The best performance would require a slightly rich mixture, with the lambda around 0.9, while fuel economy would call for a slightly lean one, between 1.1 and 1.3. Some harmful components in the exhaust gas would reduce in quantity between lambda values of 1 to 1.2, others below 0.8 or above 1.4. And if this is not yet enough, a cold engine requires a very rich mixture to keep running. After warming up, the mixture can return to normal, but the temperature of the incoming air still plays a significant role: the cooler the air, the denser it becomes, and this influences the lambda ratio as well.

All these requirements are impossible to satisfy with simpler mechanical devices like carburetors. Electronic fuel injection provides a system that can measure the many circumstances the engine is operating in and decide on the amount of fuel (in other words, the lambda ratio) entering the engine. By carefully adjusting the internal rules of this device, manufacturers can adapt the characteristics of the fuel injection to the actual requirements: a sporty GTi would demand rather different settings than a city car; besides, catalytic converters have their own demands that, as we will later see, upset the applecart quite vehemently.

The Citroën Technical Guide

Željko Nastasić and I are proud to present the Citroën Technical Guide. This book, available in PDF format (a free reader can be downloaded from Foxit Software), describes the functioning of all systems of interest in our Citroëns, from the early days of the DS until the most recent incarnation, the C5.

It is not a service manual, thus you won't find detailed circuit diagrams or repair procedures inside. Instead, it contains schematic illustrations and detailed descriptions of the various systems. It is not a mere compilation of excerpts from various books and brochures: it is a standalone guide written from ground up.

The material of the book has already been incorporated into this site, so you can also read it online.

Oldalak